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Abstract: The Bruun Rule in shore erosion is presented systematically, starting from initial assump¬ 

tions and axioms towards a rigorous mathematical treatment. Mathematical treatment is given with detail 

to assist geologists in full understanding of the development. Cases of beach excavation, littoral drift, ar¬ 

tificial beach nourishment and formation of a cuspate shoreline are treated by the theory, based on the 

Bruun Rule. 

INTRODUCTION 

The concept of shore erosion due to sea-level rise ex¬ 

pressed by Bruun (1962), later becoming widely known 

as the “Bruun Rule” (Schwartz 1967), belongs to the 

class of concepts, which are enthusiastically supported 

by some scientists, while immediately triggering a 

negative response from others. 

The chronology of Bruun Rule studies (Fisher 1980a) 

includes laboratory and/or field observations, by 

Schwartz (1965, 1967), Dubois (1975, 1976, 1977a, 

1977b), Hands (1976, 1977, 1980), Fisher (1977a, 1977b, 

1977c, 1980b), and Rosen (1977, 1978a, 1978b, 1980); all 

of them strongly supporting Bruun’s concepts. On the 

other hand, the concept was criticized by Swift (1976) as 

being of limited applicability. Another criticism is that 

by Kaplin (1973), who is skeptical about the validity of 

Bruun’s concepts; although supportively stating 

simultaneously that at least some of Bruun’s concepts 

were known by the Soviet school as early as 1946. 

Valuable comments on applicability of the concept are 

given by Gill (1979). 

It appears that most of the controversy exists solely 

due to differences in interpretation of the Bruun Rule. 

The differences arise, in their turn, due to lack of 

rigorous mathematical formulation as well as lack of 

clarity in the statements of the initial assumptions of the 

Buie. Hence, our task in this paper is to present the 

Bruun Rule as a rigorous theory based on clearly stated 

assumptions. It is shown that the Bruun Rule has, in 

fact, a much wider field of application, than was 

previously thought. The Bruun theory can be applied 

for both “closed” and “open” beach systems. We start 

from formulation of the Bruun Rule as in Schwartz 

(1965, 1967). 

THE BRUUN RULE AND ITS INITIAL assump¬ 

tions 

The Bruun Rule states the following (Fig. 1): 

1. A rise in sea level causes erosion of the upper beach 

and shoreward displacement of the shore-water 

boundary. 

2. The change in sea level corresponds to translation of 

the transverse beach profile while retaining its 

original shape. 

3. The material eroded from the upper beach is equal in 

volume to the material deposited on the nearshore 
bottom. 

4. The rise of the nearshore bottom is equal to the rise 
in sea level. 

5. The relationship between sea level rise a and 

shoreward displacement s of the beach profile is given 

by the formula (Bruun 1962): 

where: / is the length of the transverse profile, 

h is the profile height, being the sum of sea 

depth at the distance / from the shore and 

the shore elevation above the sea level. 

LIMITS OF THE BRUUN RULE 

As stated by Gill (1979) the rule only applies 1, where 

there is sufficient energy; 2, where equilibrium has been 

attained; 3, where there is sufficient space in the subtidal 

area; and 4, if there is sufficient sediment. 

EXPERIMENTAL SUPPORT OF THE BRUUN 
RULE 

The two classes of experiments, supporting the Bruun 

Rule, are laboratory (Schwartz 1965, 1967) and field ex¬ 

periments. The advantage of laboratory experiments is 

that the “equilibrium profile” which is practically 

unobservable on a beach, due to continuous variations 

in wave climate, can be maintained in a laboratory 

where the wave climate can be set constant. 

Laboratory Experiments 

In the first experiment (Schwartz 1965), the wave 

basin was 81.25 cm wide and 115 cm long with variable 

gradient of the bottom adjustable at 0°, 2.5°, and 4.5°. 

The waves generated had a period of 0.33 sec ±5%, an 

amplitude of 8 ±2 mm and a wave length of 15 ±1 cm. 

Water depth ranged from 5 to 10 cm, the sand used was 

a natural Ottawa sand, washed and sorted. 

It was found that 30 mins of wave attack produced a 

beach profile which did not change with subsequent 

wave action, and this profile was assumed to be the 

“original profile” figuring in the Bruun statements. The 

water level was then raised by 10 mm, the wave 
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Fig. 1—Definition sketch of the variables in the Bruun Rule. 

The proto-profile AOB is translated towards the shore (positive 

^-direction) to its new position AOB. However, no deposition 

occurs at the values of x<0. The segment DO is assumed to be 

the sharp boundary between the regions. In reality there will 

always be a smooth transition from the point D to the curve 

BO. However, this is neglected in the Bruun theory. 

generator was set up again and as soon as the 

equilibrium profile was reached water depth and depth 

of sediment at the outer edge of the shelf were 

measured. 
The profile retained its original shape after water level 

rise and was translated towards the shore, causing the 

shore recession. During the experiment the slope of the 

bottom was varied and it is remarkable that this change 

did not have any significant effect on water depth or 

sand heights accumulated at the lower portions of the 

beach. 
In the second laboratory experiment (Schwartz 1967) 

the wave tank was larger in size (100 x 232.5 cm) and the 

wave generator operated with variable periods. The sand 

was the same as in the previous experiment and water 

level was raised in different increments and at various 

rates. 
Profile shapes were observed before and after water 

level rise and the results indicated support for statements 

1, 2 and 3 of Bruun’s Rule. The most important state¬ 

ment (4), that the increase in sand height deposition on 

the outer shelf equals the rise of water level (hence, 

maintaining the constant water depth there), was sup¬ 

ported by the experimental results. 
These experimental results support the first 4 

statements of the Bruun Rule. However, formula (1) 

was not checked during the laboratory experiments. 

This was done in some of the following field ex¬ 

periments. 

Field experiments 

In 1964 an experimental program was established to 

study the variation of beach profiles under the variation 

of sea level due to neap and spring tides (Schwartz 1967, 

1979). At Herring Cove Beach in the Cape Cod National 

Seashore (USA) during a slight breeze, small waves ap¬ 

proaching the breaker zone were observed with 15-20 ctyi 

heights and periods of 3 sec. The direction of wave ap¬ 

proach during the summer is predominantly from ths 

north-west. Shore drift at this time, is consequently* 

toward the south. Sediment supply for this part of ths 

Cape was provided by shore drift from the cliffs Ctf 

glacial drift that form the outer coast. The nearshoKj 

bottom is characterized by a steep slope prior to grading 

off to a gentler slope. 

At nearby Nauset Light Beach which bears 12° we$t 

of north and is exposed to the fetch of the Atlantic 

Ocean, small waves from the southeast approach the 

breaker zone on a calm day with a period of 8 secs and a 

height of 30 cm. Erosion of the back beach cliff of 

glacial drift supplies sediment that drifts northward. 

The nearshore bottom slopes gently to a bar 500 m 

offshore at low tide. 
The results of profiling during low and high water 

levels indicate parallel translation without significant 

change in shape during sea-level rise. The more dynamic 

regime at Nauset Light Beach means greater translation. 

Another field experiment, strongly supporting state¬ 

ment 2 of the Bruun Rule, was conducted by Dubois 

(1976) who measured nearshore profiles of Lake 

Michigan as water level seasonally rose from April to 

July, 1971. There were a total of 17 measurements of 

beach profiles during this period. The profiles presented 

by Dubois clearly indicate the parallel translation 

without significant changes in shape of profiles as water 

level rose. 
Using the Bruun formula (1), in which the value / was 

taken as a distance from foreshore base to the position 

of breaking waves, Dubois (1977a) calculated shore 

recessions and compared them with the observed values 

for various wave conditions recorded. The agreement 

between the values of shore recession observed in the. 

field and those calculated on the basis of Bruun’s for¬ 

mula (1) was remarkable. 
The above field observations were limited to only two 

sites and a few months in both Schwartz’s and Dubois’ 

experiments. The following field experiment by Hands 

(1976, 1980) was devoted to more long-term shore ero¬ 

sion. 
Hands (1976, 1980) described the response of Lake 

Michigan shores to increased water level over a 9 year 

period at 34 sites. He used formula (1) and demon¬ 

strated good agreement with observed erosion. His most 

interesting result was the clear transition zone between 

the area of bottom erosion and no erosion. Hands was 

the first to point out that actual length of the bottom 

profile (value / in eq. (1)) is not important, because it is 

the value /i//, which is critical in the formula (1), and 

this value does not change much whether the length of a 

transition zone is considered or not. 

Observations by Fisher (1977a, 1977b, 1980b) of 

Rhode Island shoreline retreat over 35 years with a scope 

of 113 sites take into account an advance of sea-shore 

boundary due to a submergence (drowning) of the shore 

without erosion, separating this from shore retreat due 

to shore erosion, to which he applies Bruun’s formula 
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(1). The greatest contribution of Fisher is to consider the 

“open” system, in which not all the sediment volume 

eroded is deposited on the nearshore bottom. Sediment 

budget calculations by Fisher require knowledge of the 

position of the point between the beach erosion zone 

and the offshore deposition zone (point Z on Fig. 1) to 

which various names had been prescribed (inflection, 

fulcrum, null point). 

It will be demonstrated below, however, that 

knowledge of position of such a point is not needed for 

either “closed” or “open” systems. 

The longest project undertaken up to date was that of 

Rosen (1978b, 1980), who described the shore erosion 

on 146 beach units, due to sea level rise, over 100 years. 

The study area consisted of 350 km of estuarine 

shoreline in the southern half of Chesapeake Bay. 

Bruun’s formula (1) was applied to calculate an average 

over 100 years’ shore recession rate and the results were 

compared to the measured values. 

On the basis of the above laboratory and field ex¬ 

periments it is clear that experimental support exists for 

the Bruun Rule. We now have to analyze the Bruun Rule 

statements themselves. 

ANALYTICAL DESCRIPTION OF THE BRUUN 

effect 

Statement 2 of the Bruun Rule, termed the “Bruun 

Effect” (Schwartz 1967), must be accompanied by state¬ 

ment l, which indicates in what direction (onshore or 

offshore) the profile is translated during sea level rise. 

Considering these two statements together as separated 

for the time being from the other Bruun statements, we 

must introduce a notation a for the rise of the profile, 

which is not required at this stage to be equal to the sea 

level rise a. 
The bottom profile is considered as a function f(x,s) 

of the variable * and the parameter s. 

Assume that the initial shape of the profile, before 

erosion occurred (5 = 0), was given by a certain arbitrary 

function f0(x). Then the initial condition can be written 
as 

Ax, 5)1 =fo(x) (2) 
|5=0 

The translated profile, shifted by s and lifted by a(s) is 

given by 

Ax, 5) =f0(x - 5) + a(s) (3) 

Let us assume now, that we accept Bruun formula (1), 

equating a-a, which, when substituted into (3) gives the 

result: 

Ax,a)=Mx-f> + a (4) 

This is the analytical form of the Bruun effect, 

because, when a = 0, the function Ax,a) reduces to the 

initial profile shape f()(x); for any given positive sea level 

rise a, the profile is shifted shorewards in the positive 

^-direction by the value al/h and raised by the value a, 

retaining its original shape fQ(x), hence statements 1 and 

2 of Bruun’s theory follow from (4). (For the negative a 

(sea level fall), the profile moves offshore and 

downwards). 

Let us consider now the case in a certain sense op¬ 

posite to rise in sea level, namely, elevation of the beach 

profile by the value 6(5) due, for example, to artificial 

nourishment of a beach. Elevation of the beach profile 

while the absolute sea level remains still is equivalent to a 

fall of the relative sea level with respect to the nearshore 

bottom. Hence, according to Bruun’s statements 1 and 

2, the beach should retain its original shape, but must be 

translated seawards. 

If, once again, the Bruun formula (1) is utilized, with 

the value of profile rise b substituted instead of a, a for¬ 

mula analogous to (4) emerges: 

Ax,b)=f0(x+^) + b (5) 

When there is no beach nourishment (b = 0), the 

beach profile reduces to the original profile shape f0(x). 

For any positive b>0 (beach nourishment) the profile 

is shifted seawards by the value bl/h, while retaining its 

original shape. (For b negative due, for example, to 

sinking of sediments offshore, littoral drift or bottom 

excavation, the profile is moving shorewards, i.e. ero¬ 

sion occurs.) 

If it happens that sea level rise a is accompanied by 

beach nourishment, resulting in the bottom rise b, then, 

combining equations (4) and (5), the resultant beach 

transformation can be described as: 

Ax,a,b) =/o[x+ (b - a)] + (b +a) (6) 

where f0(x) is the original shape of the beach. 

Note that the basic equations (4), (5) and (6) were ob¬ 

tained solely on the basis of the first two statements of 
Bruun Rule. 

BRUUN RULE FOR CLOSED BEACH SYSTEMS 

Statement 3 of the Bruun Rule is the definition of the 

closed beach system, in which the volume of erosion is 

balanced by the volume of deposition and no exchange 

of beach material with the outer world exists. 

It may seem obvious that for the calculation of 

volumes of erosion and deposition one needs to know 

the position of the fulcral (null) point (see Fig. 1) and 

this need was, in fact, expressed by Dubois (1977a) and 

Fisher (1980). The difficulty here is that there could be, 

in principle, several such fulcral points, as shown in Fig. 

2. Determination of their positions requires knowledge 

of beach profile shape and foreknowledge of the same 

values which one is going to calculate on the basis of 

equating the volumes of erosion and accretion. 

This difficulty, however, can be by-passed if one 

prescribes opposite signs to the volumes of erosion and 

accretion according to the signs of difference in or¬ 

dinates between the protoprofile f0(x) and the translated 

profile J[x,s). (Sign plus corresponds to accretion; sign 

minus to erosion.) Then the definite integral taken along 

the A'-axis will be equal to zero, when volumes (area be¬ 

tween the curves in Fig. 2) of erosion and accretion 

balance each other. 
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Fig. 2 —Multiple fulcrum points, corresponding to multiple 
areas of erosion (horizontal dashing) and deposition (vertical 

dashing). 

The important issue here is the limits of integration. 

As already mentioned, the value / (offshore beach 

length) is supposed to have been chosen in such a way 

that no erosion or deposition occurs offshore beyond 

this length, i.e. to the left of the point x=0 in Fig. 2. 

Therefore, it is reasonable to accept point a*=0 as the 

lower limit of integration. On the other hand, if the 

beach profile retreat is equal to value s during sea level 

rise, it is reasonable to take the upper limit of integra¬ 

tion as (l + s). Consequently, we conclude that Bruun’s 

statement 3 can be equivalently written analytically (in 

the co-ordinate system of Figs 1, 2) as 

1= T [f (x,s)-f (x)) dx = 0 (7) 
0 o 

The first two statements of the Bruun Rule were 

shown in the previous paragraph to lead to the analytical 

expression (3) of the functionals), in which the rise of 

bottom profile as a whole was denoted a(s). According 

to statement 4 we now equate the rise of profile a(s) to 

the sea level rise a(s). Hence, the function^x.s), figuring 

in (3) can be written 

J[x,s) =/o (x-s) + a(s) (8) 

Let us emphasize that equations (7) and (8) comprise 

statements 1-4 of the Bruun Rule, but the Bruun for¬ 

mula (1) (statement 5) is not used. On the contrary, we 

are going to demonstrate, that these four statements 

form the complete set of axioms, from which formula 

(1) can be derived. We start from several examples of 

profiles, having simple analytical expressions. 

Analytical Profiles 

Parabolic profile 

Consider the profile, described by a parabola 

Mx)=x* (9) 

Let us note, that when x = l, the right end value of 

function (9) equals the profile height h (see Fig. 3), hence 

h = l2. Substituting (9) into (8) and then into (7), one ob¬ 

tains 

l+s 

| [(x +s)2 + a(s) - x2)dx= 
l+s 

| [ - 2xs + s1 + a(s)]dx = 

- x2s + s2x+xa(s) | = - Ps - Is2 + (/+s)a(s) = 0 
o 

Hence 

a(s) = 
l2s + Is2 

l+s /(l + y) ' 

(10) 

(ID 

where the value l2 was equated to h. Bruun’s formula (1) 

emerges rigorously from equations (7) and (8) for the 

parabolic profile. 

Now the position of the fulcrum point can be found 

as the point of intersection of the functions f0(x) and 

J(x,s) by solving the equation 

(notice that a(s) = hs/l = l2s/l = Is) 

x2 = (x-s)2 + a(s) = (x-s)2 + Is 

0 = - 2xs + s2 +Is 

$(/+$)__ l+s (12) 

2s 2 
The fulcrum point appears to be at the distance 

(l + s)/2 from the coordinate system origin. 

Let us find the volume (area, as in Fig. 1) of accretion. 

This is the integral between the points ^=0 and the 

fulcrum point x= Vi(l+s) 

Vi (l+s) Vl(l*s) 

V a = \[(x - s)2 + Is - x2]dx = s\[(l + s) - 2 x]dx 
0 o 

V4(i+») 

= s[(l + s)x-x2] | =14s(/ + 5)2 (13) 
0 

t 
h 

1 

LINEAR 

f (x) = kx 
u 

/ \ hs 
a(s)=-j- 

V 
h 
1 

PARABOLIC 

/0(x)=x2 a(s)=T 

*T 
h 
1 

CUBIC 

/0(x)=x3 

a(s)=-!}p- • G(-|-) 

rr 
h 
1 

MONOMIAL 

/0(x)=x" 

a(s)= +¥ • Gn(-|-) 

Gn=1 + ^+n^* 

J r 
h 
| 

EXPONENT 

f0(x)=eax-i 
, , hs +oc(e*+t)"i" 

T ARBITRARY WITH 

FLAT BOUNDARIES °<s>= A, *0+^) 

fr ARBITRARY with 
SEAWARD SLOPE CC 
AND SHOREWARD 
SLOPE A 

o(s)= hiiia+ell: 

Fig. 3 —Analytical and non-analytical profiles with correspon¬ 
ding formula, relating sea level rise a to shore retreat s. 
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Analogously, the volume of erosion, i.e. between the 
fulcrum point jc= Vi(l+s) and the shoreward limit 
x= /+$, is equal to 

Preserving only the terms with the value s/l of power 
two and less, one obtains in the same manner as for the 
parabola and cubic function 

J+, / +5 

Vg= j [(x-s)2+ /s-x2]cfr = .s[(/ + $)*-A'2] 
Zi (i+s) Zi U*s) 

= — lAs(l+s)2 (14) 

From this example it is seen that volumes of erosion 
and accretion are equal in absolute values, as it should 
be according to the Bruun statement 3. 

However, the actual volumes can be found only when 
the position of the fulcral point has been calculated. The 
impressive result obtained was that the Bruun formula is 
exact for the parabolic profile. We shall see now, that 
this is not necessarily correct for other profile shapes. 

/s[l+4. 
o(s) =- 

s , n(n- 1) 
7+ ~~5~~ 
l(\ + s/t) 

hs//.Gn(s/l) (20) 

It is seen, that for large n the value of the correction 
factor can also be large and departure from the Bruun 
formula can be significant. For example, for n= 10 and 
s/l=0A the value G„= 1.5. We shall discuss these results 
later and consider now another class of profiles, for 
which departure from the Bruun formula can also be 
large. 

Exponential profile 

Cubic profile 

Let/<>(*) =** 05) 

then at the right end of the profile, where x= /, the value 
y’o(jc)| v_ /. = l3= h, the value h being the profile height in 
the cooTdinate system of Fig. 3. Substituting (15) into (8) 
and then into (7), we arrive at 

/fa ^ /f* 
I = j [(.v-s)J + a{s) -x’ldx = - x*s + -2 .vV - xs* + xa(s) \ 

0 “ o 

= l3s+ y/252 + /5J+ Ls4-(/ + s) a(s) = 0 (16) 

Using the identity /J = /?, it follows: 

Letf0(x) = eax-1 (21) 

The profile has a zero ordinate when x=0 and the 
height of the profile at x=l is equal to h = eal- 1. By 
varying the (positive) parameter a various shapes can be 
obtained (Fig. 3). Substituting the translated function 

fix,s) = e*'#' - 1 + a(s) = e*e‘a* - 1 + a(s) (22) 

together with (21) into the integral (7) we obtain, with 
some simple manipulations 

I = l]s[eax(eraa -1) + a(s) dx (23) 

a,s) = hs(1 + II + F + 1/2 ? } = hs/,-GZ/r) (]7) 

/(l+f) 

One can recognize here the right-hand side of the 
Bruun formula, being multiplied by the correction fac¬ 
tor G(s//). When the ratio s/l is small in comparison to 
unity, the value of the correction factor is also small. 
For example, when 5//= 0.1, the value G($//)= 1.05, 
meaning that use of Bruun formula (1) for a cubic 
profile results in an error of 5%. For the more realistic 
value s/l-0.01, the factor G(s/l) equals 1.005, meaning 
an error of 0.5%. We show below, that for other 
analytical profiles the errors could be much larger. 

Monomial profile 

Let/o(.v) = *'’ (18) 

where n> 1. At the point x=l the height of the profile 
is h = ln. Substituting (18) into (8) and then (7), we can 
expand the integrand: 

(x - s)n + tf(s) — xn = — nx s + /7(^[ 0 x1' s2 

__ n(n—OU?—iijr-3 s3 + ... (- 1 )By + 0(5). (19) 

Upon integration, the powers of (l + s) appear, which 
are expanded in the series such as 

(/+5)" = /"(l + A)" = /"|l +n. j + n{n - 1) s2 

— T* 

(I + s)"-' = ( \ = r-'[ \ + (n - \ ) ^ + 

(n-\)(n-2) s1 , 
2 • p ¥ ¥ ¥ i 

= ± (e-“ - 1) (e"e“ - 1) + (/+s)a(s) 

= i 1 - e") + (1 - e‘“)] + (/ + s)a(s) = 0 

As the value s is considered to be small, we employ 
now the familiar Taylor expansions, retaining only the 
terms with s in the power two and less 

1 -er= 1 -(1 +as + °2^+ .. .)c= ^(as+aj~) 

1 -e-°s= 1 -(1 (24) 

Substitution of (24) into (23) leads to 

-s(e“'- l)-°^(e“'+ l) + (l + s)a(s) = 0 

wherefrom, if one recalls that (e^-l) = /?, the result 
emerges 

a(s) = 
hs-\-a(eal 4-1)52/2 

/(!+/-) 
(25) 

It is seen that for a small in comparison with unity the 
Bruun formula follows once again. However, for large a 
(see Fig. 3) the second term in the numerator may 
become predominant and it grows alarmingly fast with 
the increase of a. We again temporarily postpone the 
discussion of the reasons for such large errors and in¬ 
stead return back to the case of the linear profile, which 
we avoided discussing before, quite deliberately. 
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Linear profile 

Let/o(x) = kx;fix,s) = k(x-s) + a(s) (26) 

where the slope k- j- 

The integral (7) then reduces to: 

I = j [k(x-s) + a(5) - kx\clx= j [ - ks + a(s)]dx 
0 

= - ks + a(s) = 0 

0 

(27) 

Hence, 

a (s) = ks = hs/l (28) 

and the Bruun formula emerges, exactly. Notice, that in 

this particular case of linear profile (and in this case 

only) the integrand in (27) equals zero identically, in¬ 

dependently of the value of x, as soon as (28) is used. If 

we recall the case of the parabolic profile, where to find 

the fulcrum point we need to equalize the integrand to 

zero, it becomes obvious that for a linear profile every 

point x is the fulcrum point; hence no erosion or accre¬ 

tion really occurs. 
As any analytical function fix) can be expanded as a 

power series, it follows from equations (11), (17), (20) 

and (28), that Bruun formula (1) is rigorous only for 

generalised parabolic profile 

fix) = clx+c2x2 (29) 

where the constants Ci and c2 are arbitrary. For higher 

order of profiles the Bruun formula (1) holds only as an 

approximation, as summarised in Fig. 3. 

Non-Analytical Profiles and Boundary Conditions 

One may notice that when the profile f0(x) is shifted 

shorewards by the value 5, the portion of the profile 

which originally corresponded to the values .v<0, ap¬ 

pears at the positive part of the .v-axis (see Figs 1, 2). 

This means, that it is insufficient to know the profile 

shape Jo(x) strictly within the interval 0<*</; to 

calculate the integral (7) one needs also to know the 

behavior of the function f0 (x) beyond the points 0; /, 

namely, in the wider interval [-s;l + s]. 

Hence, the outer boundaries of the segment [0;/] are 

important, and the shape of the profile at these boun¬ 

daries -s<.v<0 and /<£</ +5 forms some kind of 

boundary condition (not to be confused with the boun¬ 

dary conditions for differential equations). 

We are going to demonstrate now that these are 

precisely the boundary conditions, which determine 

validity or invalidity of the Bruun formula (1). 

Let us consider an arbitrary function fix) with its do¬ 

main of definition in the interval [-$<.*</ + $]. (The 

subscript zero is dropped out here for simplicity of nota¬ 

tion only.) 
Using the general formulae (7) and (8), the integral I is 

as follows: 

I = Tlfix-s) + a(s)-fix)\dx= I, + I2 - I3 (29) 

where 

I. = T/l*- s)dx; 12 = ! a(s)dx; I, = j .Rx)dx (30) 
0 0 0 

By a change of variables the integrals may be rewritten 

as: 

I, = l\fix ~ s)dx = \fix)dx = [fix)dx+ \fix)dx= (31a) 
O -J 0 -J 

= \j\x)dx+ \f( - x)dx. 
0 0 

(+J 

12 = j a(s)dx = (/+s)a(s) (31 b) 
0 

Ij = TAx)dx= \Jlx)dx+'\J{x)dx= j f(x)dx + 
oo/o 

\f(x + l)dx (31c) 
0 

Combining the expressions (31a, b and c) according to 
i 

(29) it is seen, that the integrals \f[x)dx cancel each other 

and: 0 

1 = i[/(~A-)-y(x+/)]^ + (/ + 5)a(5) (32) 
0 

According to equation (7), the value I should equal 

zero and the rigorous expression for the relationship 0(5) 

follows: 

0(5) = 
\lfix+l)-fi-x)]dx 
0__ 

/+S 

(33) 

Returning back to the temporarily dropped notation 

/0(jc), it is convenient to rewrite (33) in the following 

form: 

a(s) = h'!; F(s) = i lf»(x + f) -/»( - x)]dx (34) 
I T J 0 

The main advantage of (34) is that it makes clear the 

role of boundary conditions. It is seen from (34) that 

behavior of the profile fQ[x) outside the interval [0; f] 

contributes to the value F(s), while shape of the profile 

within this interval is of no importance at all. 

To clarify this statement, consider the two classes of 

non-analytical profiles. 

(1) Consider one class of profiles, which are arbitrary 

between the points [0, /] and horizontal beyond these 

points (Fig. 3). The profile is assumed to have the height 

/?, then 

fi(x+1) =/<,(/) = h 

M-x)=M0) = 0 (35) 
Calculation of the function F(s) in (34) gives, after 

substitution of (35) in it 

F(s)= ! hdx=hs (36) 
0 

Hence, for such a profile 

a(s) = 
hs 

l + 5 

hs 

K\+Sf) 
(37) 

and Bruun formula (1) follows, if the value s/l is small in 

comparison to unity. 

(2) Consider another class of profiles, which again are 

arbitrary between the points [0,1], but have extensions 
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beyond the terminal points as linear functions (Fig. 3) 

fo(x + f) = h + 0x— shoreward 

f0( -x) = - ax- seaward (38) 
The parameter a is, in fact, the seaward slope of the 

profile, while (3 is the shoreward slope. 

Substitution of (38) into (34) gives 

F {s) =](/? + /3x+ ax] dx=[hs + (0 + a) ] (39) 
0 *• 

It is seen, that the seaward slope a is accompanied in 

formula (39) by the corresponding shoreward slope (3 

and both slopes play equal roles. 

Particularly, when the slopes are horizontal, (i.e. 

xx = l3 = 0) formula (39) reduces to (36). 

Another case of reduction to (36) occurs when 

a= -/3, i.e. seaward and shoreward slopes are of op¬ 

posite signs. 
An interesting case emerges when slopes a = (3 = k, 

where k = h/l. Then it follows from (39) 

F(5) = /js + A-52=/75(1+^-) (40) 

and the Bruun formula appears rigorously once again 

, v hs{ 14" "T) hs( 1T -y) » /. 
a(s) =  _r = I = hs/l (4 j) 

/+s /(1+^-) 

Hence, when both seaward and shoreward slopes of 

otherwise arbitrary profiles are equal to the value h/l of 

the profile, the Bruun formula (1) is exact. 

The results obtained so far for the profiles of various 

shapes are depicted on Fig. 3 with the corresponding ex¬ 

act formula a(s). 

One can sec from Fig. 3 that steepness of monomial 

and exponential profiles grows with the increase of their 

order and so does the error in the use of the Bruun for¬ 

mula (I). Hence, the boundary conditions, rather than 

the shape of the profiles, are responsible for accuracy of 

the Bruun formula. It is seen from (39), that the value 

F(s) can depart from the Bruun value hs if the seaward 

and/or shoreward slopes are large. Reversely, one can 

always estimate the error, given by the Bruun formula, 

by means of exact formula (34). 

Consequently, we may conclude that Bruun’s formula 

(1) follows from the exact formula (34) as a very ac¬ 

curate approximation, providing the seaward and 

shoreward slopes of the profile are not too steep. In 

turn, formula (34) is based rigorously on equations (7) 

and (8), which are the mathematical formulation of the 

first four statements of the Bruun rule. 

We show that the same Bruun statements form the 

basis for the theory of erosion/accretion in open beach 

systems. 

bruun rule for open beach systems 

It is convenient to define an open beach system as one 

in which an additional volume ( + V) of sediment is sup¬ 

plied from outside the system (for example, beach 

nourishment and/or littoral drift) or, alternatively, 

some volume of sediment (-V) is removed from the 

system (for example, due to excavation of the nearshore 

bottom and/or to littoral drift). 

Beach Nourishment 

Consider the case of a positive volume (+ V) of sedi¬ 

ment being supplied to the system, while the sea level a is 

still. This case was partly touched in section 4 where 

equations (3) and (4) were derived solely on the basis of 

the first two of Bruun’s statements. 

In this section we denote the horizontal profile 

displacement due to supply or removal of sediment as r, 

leaving the notation s for horizontal profile leireat solely 

due to sea-level rise. Correspondingly, equation (3) in 
the new notation is 

Ax, r) =f0(x + r) + b(r) (42) 

where b(r) is positive, when rise of the profile occurs due 

to income of positive volume ( + V) of sediment into a 

beach system and horizontal displacement /• due to the 

same factor is taken as positive for seaward displace¬ 

ment of the profile. 

The increment in volume of sediment in a beach 

system due to translation of the profile given by (42) can 

be calculated as an integral I, analogous to (29). 

However, the limits of integration must be different 

now. As the profile is shifting seawards (positive r), part 

of the shifted profile will appear left of point a' = 0 (Fig. 

4), beyond the limiting length / offshore. But our initial 

assumption was that a profile is undisturbed to the left 

of point .v=0. Hence, the lower limit of integration 

should be taken as ,v=0. 

On the other hand, as the profile is shifted seaward, 

no disturbance of the profile occurs beyond point x*=/, 

which should be taken now as the upper limit of integra¬ 

tion. Consequently, the additional volume ( + V) of sedi¬ 

ment supplied to the beach should be equal to the in¬ 

tegral (we again temporarily drop the subscript zero in 

Mx)) 

I=J \A* + r) + b(r)-J{x)]dx= I, +12- Ij = V (43) 
0 

where 

Ii= J Ax+r)dx= j)\x)dx + J j{x)dx + \f(x)dx (44a) 
0 r r l 

I2= j b(r)dx=lb(r) (44b) 
0 

Ia= j J(x)dx. (44c) 
0 

Adding to I, eq. (44a) the self-cancelling pair of in¬ 

tegrals 

'\f(x)dx- ]/(x)dx (45) 
O 0 

we can rewrite I, as 

I.= 1 j\x)dx+ \f(x)dx + "\f(x)dx- \ J\x)dx (46) 
0 r l 0 

where the sum of the first two integrals exactly equals I3, 

thus cancelling it. 



94 H. ALLISON AND M. L. SCHWARTZ 

Fig. 4—Deposition of sediments, resulting in rise of profile by 

the value b(r) and seaward shift by the value r (r is positive 

seaward). 

Consequently 

1= i f[x)dx- j J[x)dx + lb(r) = V (47) 
/ 0 

and the formula for b(r) emerges (returning back to 

subscript zero) 

b(r) = X(V- ]f0(x)dx+) fo(x)dx) (48) 
/ / 0 

One has to notice that the profile shape between the 

points x= r and x= l does not figure in (48) and value of 

the integrals is determined by the behavior of the profile 

shape in the neighborhood of its terminal points .v = 0 

and x=L Let us assume that the profile is nearly fiat 

around ,v=0 and x'=/, i.e. at the interval [0,/*] the func¬ 

tion f0(x) = 0 and at the shoreward end f0(x) = h at the in¬ 

terval [/, /4-r], then the first integral in (48) reduces to 

the value hr and the second to zero. Formula (49) then 

emerges as: 

b(r) = (V- hr)/l (49) 

It can be shown, by analogy with the previous section, 

that (49) is a very good approximation of the exact result 

of (48) when the boundary conditions are such that the 

seaward and shoreward slopes are not too steep and the 

difference in their slope angles is small. 

The expression for r follows from (49) 

r=(V-bl)/h (50) 

On the other hand, we did have another expression 

for the same value r in equation (5) 

-i
 ll 

=
*i

s:
 

(51) 

Combining (50) and (51), we obtain 

r=I b = J 
2h ' 21 

(52) 

Consequently, equation (42), becomes dependent on 

the volume of sediment supplied to the beach 

f(x, V) =f0(x + 2^-) + 2/ (53) 

We want to emphasize, that the values r and b in (52) 

and formula (53) are independent of the profile shape. 

If the beach loses sediment (due to excavation of the 

bottom, littoral drift, etc.), then the value Lin (52) and 

(53) should be taken as negative and the beach profile 

shifts shorcwards and downwards, because the values r 

and b become negative. 

When beach nourishment (excavation) is accom¬ 

panied by sea level rise, it follows from equations (6) 

and (53), that the new beach profile is described by the 

equation 

f(x,a, V) =/0[x+ jt ( ^ -al)]+ j- ( j +af), (54) 

where positive values V and a correspond to beach 

nourishment and rise in sea level. 

Equation (54) was obtained, after all, solely on the 

basis of the first four Bruun Rule statements. 

The previous treatment was performed for a two- 

dimensional cross-section of a beach, which may also be 

considered a slice (of unit thickness) of an actually three- 

dimensional beach. 

Bruun Rule for Three-Dimensional Beach System 

with Littoral Drift 

Consider the three-dimensional portion of shoreline 

in the coordinate system of Fig. 5 (note that the y coor¬ 

dinate is now directed alongshore). Any vertical plane, 

parallel to the plane ZOX, dissecting the shore, forms in 

its cross-section a two-dimensional profile, such as 

described in the previous sections. However, there is no 

need to assume that all the cross-sections have the same 

or similar shape. For each cross-section with a longshore 

coordinate y equation (54) holds; therefore independent 

of the shape of the particular cross-section, its seaward 

motion (denoted R(y) from now on) and vertical uplift 

(denoted a{y)) is equal to 

(55a) 

a{y) = a+[V(y)/21(y)] (55b) 

where a is the rise in sea level as before and the functions 

h(y)\ l(y); V(y) are dependent on the longshore coor¬ 

dinate y. Consider the equation of continuity or the 

volume conservation equation for longshore sediment 

drift (see, for example, Komar, 1976) 

8V/dt= -8Q/dy 

where Q is the longshore volumetric rate of sediment 

transport (measured, for example, in m3/day). 

The physical sense of equation (56) is quite obvious: it 

states that the time-rate (speed) of volume of sediment 

removal (sign negative in 56) from a beach equals the 

longshore rate in change of volumetric transport along 

the beach. This is illustrated in Fig. 5, where both func¬ 

tion Q{y,t) and dQ/dy are plotted along the longshore 

coordinate y for one specific type of dependancy Q(y). 

It is reasonable to assume further that the basic 

parameters h(y) and /O'), figuring in (55), do not change 

much in time due to shore erosion (accretion), and only 

the values, R, U, a and V in (55) are variable in time. 
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Fig. 5 —Definition sketch for longshore littoral drift. Axis y 
directed alongshore. Profile shapes could be different for 

various y, such as yx and y2. 

Consequently, equations (55) can be rewritten to incor¬ 

porate the above assumption as 

R(y’t) = h(Lj[ViM-a(t)/(y)] (57a) 

a(y,t) = a(t) + ^2 (57b) 

Notice that sea level rise a in (57) is assumed to be 

dependent on time, but independent of longshore coor¬ 

dinate y, meaning that extremely long coastlines, where 

sea-level varies along the coastline, are not considered. 

Equations (57) give the complete steady-state solution of 

the problem of beach nourishment (excavation) in the 

presence of variations in the time sea level rise a{t) for 

any distribution of V(yJ) along the shore and in time, 

providing the values h(y) and l(y) are known. 

Differentiating (57) with respect to time t one obtains 

dR/dt = Vid V/dt - l(y)da/dt]/h(y) (58a) 

da/dt = da/dt+ Vil(y\dV/dt (58b) 

Substituting instead of dv/dt in (58) the equal value 

- dQ/dy from (56), it follows 

dR/dt = — [ Vi • dQ/dy+l{y) • da/dt\/h(y) (59a) 

da/dt = da/dt — ViKyY dQ/dy (59b) 

Integrating equations (59) with respect to time, one 

obtains the final formulae for calculation of shoreward 

displacement R and profile rise a as functions of 

longshore sediment transport Q and variations in the 

time of sea level rise a(t) 

R(y, 0 = - h^[ { j d-Q^t + /O). a(l)] (60a) 

(60b) 

We illustrate the use of (60) by two examples. 

Example 1 

Let <7(/) = 0 and Q(y,t)=y sin <ot> meaning that the 

sediment transport rate is linearly distributed along the 
shoreline and varies periodically in time. 

Then 

dQ(y,t)/dy = sin ut (61) 

and from (60) one obtains by integration: 

R(y> t)=~ 2 Jbfos¥+ c (62a) 
<Xy,t)= - cos ut + D (62b) 

where C and D are the constants to be determined from 

initial conditions. Assuming them as R(y,t) = 0 and 

fly,0 = 0 (no initial erosion-accretion) when f = 0, it is 
easy to find from (62) 

C=2ji(y)’D=2zky) (63) 

hence, the seaward shore displacement and rise of the 
bottom are: 

m 0 = 2 Jjfyf1 - cos (64a) 

«0’.0 = 2J(^(1-COS“0, (64b) 

meaning periodic (for example; seasonal) variation in 

shore erosion, dependent on the original longshore 

shape (functions h(y) and l{y)) of the coastline. 

Example 2 

Let <7(/) = 0 and a tropical cyclone (hurricane) moves 

alongshore, causing a propagating wave-like longshore 
transport Q(y,t) with magnitude Q0 

Q(y, 0 = Qo cos (Ky+(at) (65) 

Then 

- KQo sin (Ky + ut) (66) 

and upon substitution of (66) into (60a, b) and integra¬ 
tion 

R(y. 0=- 5J^yfos {Ky + ut) + C(y) (67a) 

a{y, 0 = - (Ky + + D(y) (67b) 

Here instead of constants C and D, as in the previous 

example, the functions C(y) and D(y) should be found 

from initial conditions. One obtains from (67) for / = 0 

fosKy (68a> 

D(y)=i^/fosKy (68b) 

and the final result emerges from (67) upon substitution 
of (68) 
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^Cv,0=^-S-2r[cos AT-cos (Ky + oj/)] (69a) 
2u)n(y) 

a[yyt) = ^-Q-2\cos Kv-cos^Ky^- ut)] (69b) 
2wl{y) 

Note the appearance of the time independent term cos 

Ky in (69), meaning that after passage of a cyclone (hur¬ 

ricane) an irreversible cuspate change of a coastline oc¬ 

curs, if the rate of sediment transport could be approx¬ 

imated as a propagating wave (65). 

DISCUSSION 

The first four statements of the Bruun Rule form a 

non-contradictory set of axioms, which need no other 

axioms for development of the theory of shore erosion; 

incorporating not only sea level rise, for which the 

statements were originally intended, but also the prob¬ 

lems of beach nourishment, excavation and littoral 

drift. 

The most important of all assumptions of the theory, 

its cornerstone, is the statement, that beach profile 

essentially preserves its shape during process of shore 

evolution, be it due to sea-level rise, wave attack, beach 

nourishment etc. Of course, it is recognised, that some 

temporal variations, perhaps caused by a sudden storm, 

can be superimposed on the conservative shape of beach 

profile, but these variations are usually short-lived and 

can be discarded in the first approximation. 

The experimental data available support this assump¬ 

tion. No doubt, further experimental work is necessary. 

The most important limitation of the above theory is 

its static nature. 

This means, that the beach system is considered only 

in two states: initial state, before evolution started and 

final state, after evolution was completed. The transition 

process between these two states is beyond the scope of 

the present theory. Clearly, this shortcoming must be 

rectified. This is our direction for future research. 
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